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ABSTRACT

In this paper we implement various linear and nonlinear subspace-based anomaly detectors for hyperspectral
imagery. First, a dual window technique is used to separate the local area around each pixel into two regions - an
inner-window region (IWR) and an outer-window region (OWR). Pixel spectra from each region are projected
onto a subspace which is defined by projection bases that can be generated in several ways. Here we use three
common pattern classification techniques (Principal Component Analysis (PCA), Fisher Linear Discriminant
(FLD) Analysis, and the Eigenspace Separation Transform (EST)) to generate projection vectors. In addition
to these three algorithms, the well-known Reed-Xiaoli (RX) anomaly detector is also implemented. Each of the
four linear methods is then implicitly defined in a high- (possibly infinite-) dimensional feature space by using a
nonlinear mapping associated with a kernel function. Using a common machine-learning technique known as the
kernel trick all dot products in the feature space are replaced with a Mercer kernel function defined in terms of
the original input data space. To determine how anomalous a given pixel is, we then project the current test pixel
spectra and the spectral mean vector of the OWR onto the linear and nonlinear projection vecotrs in order to
exploit the statistical differences between the IWR and OWR pixels. Anomalies are detected if the separation of
the projection of the current test pixel spectra and the OWR mean spectra are greater than a certain threshold.
Comparisons are made using receiver operating characteristics (ROC) curves.

Keywords: Anomaly detection, hyperspectral imagery, Eigenspace Separation Transform (EST), kernel-based
machine learning, kernel PCA, kernel Fisher discriminant, kernels.

1. INTRODUCTION

Anomaly detectors are pattern recognition schemes that are used to detect objects that might be of military
interest. Almost all anomaly detectors attempt to locate anything that looks different spatially or spectrally
from its surroundings using a dual rectangular window approach.1 In spectral anomaly detection algorithms,
pixels (materials) that have a significantly different spectral signature from their neighboring background clutter
pixels are identified as spectral anomalies. Spectral anomaly detection algorithms1–8 could also use spectral
signatures to detect anomalies embedded within background clutter with a very low signal-to-noise ratio. In
spectral anomaly detectors, no prior knowledge of the target spectral signature is utilized or assumed.

One way of designing an anomaly detector is by projecting the input spectra onto a subspace whose bases
are defined by some projection vectors. In1 researchers compared subspace-based anomaly detection algorithms
using projection vectors which were generated using three common pattern recognition techniques - Principal
Component Analysis (PCA),9 Fisher Linear Discriminant (FLD) Analysis,10 and the Eigenspace Separation
Transform (EST).11 In addition, they compared the performance of a standard anomaly detection algorithm,
the so called Reed-Xiaoli (RX) detector,5 with the performances of their subspace-based anomaly detectors.

In many situations, however, a linear classifier is not always sufficient; that is, most real-world data are not
linearly separable. Furthermore, most data do not fit the Gaussian distribution assumption made by the RX
algorithm. However, by using a nonlinear mapping to transform each spectrum into a high-dimensional (possibly
infinite-dimensional) feature space we can potentially exploit higher order correlation between the spectral bands,
something that is not possible in the linear anomaly detectors. The resulting linear hyperplane separating the
anomalies from the background in the high-dimensional feature space corresponds to a nonlinear boundary in
the original input space. Unfortunately, it is computationally infeasible to carry out any algorithms in this high
dimensional feature space. However, this problem can be circumvented by using a common machine learning
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Figure 1. An example of a dual window with guard band. The numbers represent the length in pixels making up the side
of each window. Each ‘x’ in the IWR represents one pixel. The pixel in red represents the current test pixel. The figure
is not necessarily drawn to scale.

technique known as kernelization. By kernelizing the algorithm, all dot products between mapped vectors in
the feature space are instead computed using a predetermined kernel function on the input data. Moreover, this
technique will significantly simplify the mathematical computation.

This paper also examines the performance of the kernel versions of each of the four methods (PCA, FLD, EST
and RX) described above and applies each one to the anomaly detection problem. More specifically, Kernel-RX
(KRX),6 Kernel Principal Component Analysis (KPCA),12 Kernel Fisher Discriminant (KFD),13 and Kernel
Eigenspace Separation Transform (KEST), which is introduced in this paper, are all implemented and their
performances are compared against each other as well as against their linear counterparts.

This paper is structured in the following manner. In Section 2 an introduction to subspace-based anomaly
detection can be found and brief descriptions of the three linear methods which are used to generate the projection
vectors are given. Section 3 contains a brief introduction to kernel-based learning techniques while Section 4
extends each of the three linear methods from Section 2 into their respective nonlinear kernelized methods. The
RX and Kernel-RX Algorithms are presented in Section 5. Results and analysis of all four methods and their
kernel version as applied to simulated data as well as multiple hyperspectral data sets can be found in Section
6. Finally, concluding remarks are made in Section 7.

2. LINEAR SUBSPACE-BASED ANOMALY DETECTION

One common method used in many anomaly detection algorithms is the dual-window approach Its use is pred-
icated on the fact that it exploits both spatial variability in the image as well as spectral variability among
different materials. At each pixel location concentric rectangular windows centered at the test pixel are opened
creating two disjoint regions - an inner window region (IWR) and an outer window region (OWR). Hence, the
local pixel neighborhood is separated into two smaller regions. The size of the inner window is generally set
so that the inner window can fully enclose a target. In most anomaly detectors another concentric rectangle
centered at the test pixel known as the ‘guard band’ is utilized as well. An example of a dual-window with guard
band is seen in Figure (1). The guard band is slightly larger in size than the IWR yet still smaller than the
OWR. The main purpose of the guard band is to reduce the probability that some target spectra will inhabit
the OWR and hence affect the background model.8 In subspace-based anomaly detection techniques projection
(basis) vectors are generated using the statistical properties of the IWR and OWR covariance matrices.

Using the eigen-value decomposition of the covariance matrices of IWR and OWR spectra it is possible
to generate basis vectors for a subspace onto which vectors from the IWR and OWR are projected for dis-
crimination. Denote a spectral vector within the IWR of a dual window centered at a test pixel by xk =
(xk(1), xk(2), . . . , xk(J))T where J refers to the number of spectral bands and k = 1, . . . , Nin. Assuming that
there are a total of Nin pixels in the IWR, the matrix X = [x1,x2, . . . ,xNin

] is of size J ×Nin and contains the
spectra of each one of these samples as one of its Nin columns. Similarly, let a spectral vector which is contained
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within the OWR of the same dual window be denoted by yl where l = 1, . . . , Nout. Given that there are Nout

pixels in the OWR, the J × Nout matrix Y =
[

y1,y2, . . . ,yNout

]

is one whose columns are the spectral vectors
of the pixels in the OWR representing the background clutter samples. The background clutter statistics are
estimated using the spectra of the pixels in the OWR. The covariance matrices of the IWR and OWR spectra
are given by

CX =
1

Nin − 1
(X − µ̂X) (X − µ̂X)

T
(1)

CY =
1

Nout − 1
(Y − µ̂Y ) (Y − µ̂Y )

T
. (2)

where µ̂X and µ̂Y are defined as the statistical means of the IWR and OWR spectra, respectively. The vector
µ̂Y represents the estimate of the mean of the background clutter.

The projection separation statistic for a input test pixel denoted by r is calculated using

s′ = (r − µ̂Y)T WWT (r − µ̂Y). (3)

where W = [w1 w2 . . . wm] is a matrix whose columns are m projection vectors. The product WWT is known
as a projection operator and represents a subspace characterizing the spectra used to generate the projection
vectors wi. An anomaly is detected if the projection separation, s′, is greater than some threshold, η. It is also
possible to project the difference (r− µ̂Y) onto the complement subspace (I− WWT ) given by

s′ = (r − µ̂Y)T (I − WWT )(r − µ̂Y). (4)

Equation (4) is only used in some algorithms (e.g. - PCA and EST). In the experimental results section, only
the best results between Equations (3) and (4) are reported and mention will be made regarding which equation
was used. In the following subsections three different methods are used to generate the projection vectors, W,
in order to obtain the projection operator in the Equations (3) and (4) .

2.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most commonly used methods for feature extraction and
dimensionality reduction. The underlying goal is to find a projection which best represents some input data
in the least-squared sense.9 In order to generate the projection vectors, wi, the background clutter covariance
matrix, CY, is written in terms of its eigenvectors V and their corresponding eigenvalues Λ as

CY = VΛVT . (5)

the first m eigenvectors with the highest corresponding eigenvalues form the projection vectors. Thus,

WPCA = Ṽ = [v1,v2, · · · ,vm] (6)

where m is a configurable constant. Altering the value of m (i.e. - changing the number of eigenvectors used)
will change the performance of the anomaly detector as shown by experimental results.

Using Equation (6) as the projection vectors and substituting this result into Equation (3) or (4) we obtain
the corresponding projections of the input onto the subspace and the complement subspace. The PCA anomaly
detector is given by

PCA(r) = (r − µ̂Y)T
(

WPCAWT
PCA

)

(r − µ̂Y). (7)

PCA(r) = (r − µ̂Y)T
(

I − WPCAWT
PCA

)

(r − µ̂Y). (8)

The idea behind using the PCA eigenvectors lies in the fact that since these eigenvectors are optimal (i.e. -
they minimize the mean-square error) in terms of their representation of the spectral vectors of the OWR, the
projection of the difference between the test pixel, r, and the outer window mean, µ̂Y, should ideally be large if
the dual window is centered on an anomalous target.
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The algorithm outlined above can also be developed using samples collected from the IWR. In this case,
Equations (7) and (8) remain the same with the exception that the projection vectors wi are generated using
spectral information contained in the IWR rather than the OWR. In this paper, Equations (7) and (8) are
referred to as the ‘PCA Algorithm’ or simply ‘PCA’. In Section 6, only the best result among the four possible
choices for PCA is given.

2.2 Fisher Linear Discriminant Analysis

Although PCA has proven to be very useful for efficient representation of data, it does not exploit the information
in the IWR and OWR at the same time in order to generate the target or background subspaces. However, Fisher
Linear Discriminant (FLD) Analysis,10 which attempts to seek an optimal direction for discriminating between
IWR and OWR data samples, does. First, the between-class scatter matrix is defined as SB = (µ̂X − µ̂Y )(µ̂X −
µ̂Y )T while the within-class scatter matrix can be written as SW = CX + CY where CX and CY are the
covariance matrices of the samples in the IWR and OWR defined by Equations (1) and (2), respectively. The
matrix SB is a measure of how well the means of the two classes are separated while the matrix SW is a measure
of the compactness of each class cluster.

In order to calculate the optimal discrimination direction, w∗, the criterion function

w∗ = max
w

J(w) =
|wT SBw|
|wT SW w| (9)

needs to be maximized over all possible w and has been shown10 to be given by

wF = w∗ = S−1
W (µin − µout) (10)

Using Equation (10) as the projection vector and substituting this result into Equation (3) gives

FLD(r) = (r − µ̂Y )T
(

wF wT
F

)

(r − µ̂Y ). (11)

The idea behind using FLD is that it will produce a large projection separation if the spectral means of the IWR
and OWR are sufficiently dissimilar while the spectral vectors in each region are tightly clustered. In this paper,
Equation (11) is referred to as the ‘FLD Algorithm’ or simply ‘FLD’.

2.3 Eigenspace Separation Transform

The Eigenspace Separation Transform (EST) was developed by Torrieri11 as a preprocessing technique to ex-
tract features for neural network classifiers and has been successfully used by researchers for automatic clutter
rejection.14 Like PCA, EST aims to extract features from a training set by projecting the input patterns onto
a lower-dimensional orthogonal subspace. In this paper it is used to generate projection vectors in order to
separate target pixels from background clutter.

In EST algorithm we first compute the J × J Difference Correlation (DCOR) matrix

M̂ = RX − RY =
1

Nin
XXT − 1

Nout
YYT (12)

where M̂ is simply the difference of the correlation matrices of the IWR (RX) and OWR (RY ) and represents
the second order statistic differences between the two regions1 .

The eigenvalue decomposition of DCOR can be rewritten in block-matrix form in terms of its positive and
negative eigenvalues and eigenvectors as

M̂ =
[

V+ V−
]

[

Λ+ 0

0 Λ−

] [

VT
+

VT
−

]

(13)

where the columns of V+ and V− are the eigenvectors with their corresponding non-zero positive (Λ+) and
negative (Λ−) eigenvalues, respectively.
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The matrix WEST is then chosen to be the set of m positive or negative eigenvectors associated with M̂. The
choice of which set to use hinges on which set of eigenvalues (positive or negative) has the largest absolute sum.
Thus, the EST projection vectors are given as

WEST = [v1,v2, . . . ,vm] (14)

where vi (i = 1, . . . ,m) are the m most significant (either positive or negative) eigenvectors or M̂.

Using Equation (14) as the projection vectors and substituting this result into Equation (3) gives

EST(r) = (r − µ̂Y )T
(

WEST WT
EST

)

(r − µ̂Y ). (15)

It is also possible to project onto the complement subspace,
(

I − WEST WT
EST

)

. Thus, substituting Equation

(14) into Equation (4) yields

EST(r) = (r − µ̂Y)T
(

I − WEST WT
EST

)

(r − µ̂Y). (16)

Since it is possible to use either the positive eigenvectors or the negative eigenvectors, there are four possible
equations that can possibly be used. In this paper, Equations (15) and (16) are referred to as the ‘EST Algorithm’
or simply ‘EST’. In the experimental results in Section 6, only the best results among the four possible choices
of EST are presented.

3. KERNEL LEARNING THEORY

Suppose the input data set lies in the data space (χ ∈ ℜJ ) and let F be a feature space (also known as a Hilbert
space) associated with χ by some nonlinear mapping function Φ. In particular,

Φ : χ → F
x 7→ Φ(x). (17)

where x is an input vector (x ∈ χ) which is mapped into a much higher dimensional feature space. Mapping
the data using Φ into F is useful in many ways. The most significant benefit is that it is possible to define a
similarity measure using the dot product in F in terms of a function of the corresponding data in the input
space. Thus, it is possible to write

k(xi,xj) = 〈Φ(xi),Φ(xj)〉. (18)

Equation (18), which is commonly referred to in machine learning literature as the kernel trick ,15 states that all
dot products in F (a task which is otherwise computationally infeasible) can be implicitly computed by simply
using kernel functions defined on the input data. Moreover, all of this can be accomplished without actually
mapping the input vectors into F . Hence, conveniently, the mapping Φ does not even need to be identified nor
defined. In other words, Equation (18) illustrates that all dot products in F can be replaced by an appropriately
chosen Mercer kernel function k .16 For a more comprehensive discussion about the properties of various types
of kernels and for more information on kernel-based learning in general, see one of the many references devoted
to kernel methods.15,16

4. KERNEL SUBSPACE-BASED ANOMALY DETECTION

In this Section, each of the linear subspace-based methods in Sections 2.1-2.3 is extended into the feature space
F and then kernelized by replacing all dot products in the feature space by kernel functions using the kernel
trick in Equation (18). The following subsections present a derivation of each of the kernelized algorithms. Using
a nonlinear mapping Φ, the original data in the input space defined by X and Y are mapped into the feature
space F and denoted by

XΦ = Φ(X) = [Φ(x1)Φ(x2) . . . Φ(xNin
)] (19)

YΦ = Φ(Y) =
[

Φ(y1)Φ(y2) . . . Φ(yNout
)
]

(20)
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This means that XΦ represent the mapped IWR spectra and YΦ represents the mapped OWR spectra. The
statistical means of the mapped data in F are represented by µ̂XΦ

and µ̂YΦ
, respectively. For many of the

following methods, it is assumed that the mapped data is centered in F . Thus, denote each centered vector for
the IWR in F as Φc(xi) = Φ(xi) − µ̂XΦ

, i = 1, . . . , Nin and similarly for the OWR spectra (i.e. - Φc(yj) =
Φ(yj) − µ̂YΦ

, j = 1, . . . , Nout). Then, let XcΦ
and YcΦ

be matrices whose columns are the centered IWR and
OWR in the feature space, respectively. Also, let CXΦ

and CYΦ
be the covariance matrices of the centered

spectra in the feature space. The projection of the mapped test pixel spectra Φ(r) onto a linear subspace in the
feature space which is equivalent to a nonlinear subspace in the original input domain is given by

s′ = (Φ(r) − µ̂YΦ
)T WΦWT

Φ(Φ(r) − µ̂YΦ
) (21)

where WΦ =
[

w1
Φ w1

Φ . . . wm
Φ

]

is a matrix whose columns are the set of m projection vectors in F . Similarly,
projection onto the complement subspace is given by

s′ = (Φ(r) − µ̂YΦ
)T

(

IΦ − WΦWT
Φ

)

(Φ(r) − µ̂YΦ
) (22)

The following subsections outline three methods that can provide the projection vectors WΦ =
[

w1
Φ w1

Φ . . . wm
Φ

]

in order to perform nonlinear anomaly detection using a nonlinear subspace. The methods employed are simply
nonlinear extensions of each of the three algorithms detailed in Section 2.

4.1 Kernel Principal Component Analysis

In this section, the PCA method is mapped into the feature space F and then reformulated solely in terms of
dot products. The kernel trick is then utilized to help to make the problem computationally feasible. As in the
linear PCA algorithm, KPCA can be formulated using either the IWR or OWR spectra to formulate the KPCA
projection vectors in the feature space.

In order to find the PCA eigenvectors in the feature space, simply solve the mapped version of Equation (5);
specifically, the eigenvalues and eigenvectors of CYΦ

in F can be found by solving

CYΦ
= VΦΛΦVT

Φ (23)

where ΛΦ = diag
(

λ1
Φ λ2

Φ . . . λp
Φ

)

and VΦ =
[

v1
Φ v2

Φ . . . v
p
Φ

]

contain only the p nonzero eigenvalues and cor-
responding eigenvectors of CYΦ

. All eigenvectors in the feature space lie in the span of the vectors in YcΦ
.

Therefore, they can be represented as

VΦ = ΛΦ
−1/2YcΦ

A (24)

where A = [α1 α2 · · · αNout
] is a matrix whose columns are the nonzero eigenvectors of the centered Gram

(kernel) matrix Kc and ΛΦ contains the associated nonzero eigenvalues. The centered kernel matrix can be
calculated by Kc = (K − 1Nout

K − K1Nout
+ 1Nout

K1Nout
) where K is the kernel matrix whose elements are

(K)ij = k(yi,yj) with i, j = 1, . . . , Nout and (1Nout
) is an Nout × Nout with each element equal to 1/Nout. It is

known12 that the eigenvalue decomposition of the centered kernel matrix is given by

Kc = AΛΦAT (25)

Utilizing only the m most significant eigenvectors in the features space they can be written as

WPCA = ṼΦ = YcΦ
Ã (26)

where Ã = [α1 α2 · · · αm] are the m most significant eigenvectors of Kc normalized by the square roots of
their respective eigenvalues. The vectors ṼΦ are then used as projection vectors in the feature space (WΦ) in
Equation (21). Substituting Equation (26) into Equation (21) gives

KPCA(r) = (Φ(r) − µ̂YΦ
))T

(

ṼΦṼ
T

Φ

)

(Φ(r) − µ̂YΦ
).

= (Φ(r) − µ̂YΦ
)T YcΦ

ÃKPCAÃ
T

KPCAYT
cΦ

(Φ(r) − µ̂YΦ
). (27)

Kernel-Based Detection Techniques for Hyperspectral Imagery  

3 - 6 RTO-MP-SET-151 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



For notational simplicity, let KT
Yr = Φ(r)T YcΦ

and KT
Yµ̂ = µ̂

T
YΦ

YcΦ
; these are commonly referred to as

empirical kernel expansions. Substituting these results into Equation (27) results in

KPCA(r) =
(

KT
Yr − KT

Yµ̂

)T

ÃKPCAÃ
T

KPCA

(

KT
Yr − KT

Yµ̂

)

. (28)

It should be pointed out that as in the linear case, we can also project onto the complement subspace (I−ṼΦṼ
T

Φ)
in the feature space. As mentioned above, the KPCA algorithm can be formulated using the IWR spectra rather
than the OWR spectra to generate the projection vectors WΦ in the feature space.

4.2 Kernel Fisher Discriminant Analysis

It has been shown13,15 how to extend FLD analysis to its nonlinear version by using the kernel trick to compute
the Fisher discriminant in the feature space. Defining FLD in the feature space is equivalent to maximizing the
cost function given by

J(wΦ) =
|wT

ΦSΦ
BwΦ|

|wT
ΦSΦ

W wΦ|
(29)

where wΦ is the projection vector, SΦ
W = CXΦ

+CYΦ
and SΦ

B = (µ̂XΦ
− µ̂YΦ

)(µ̂XΦ
− µ̂YΦ

)T are the within-class
and between-class scatter matrices, respectively, in F .

Finding an optimal wΦ by maximizing Equation (29) is not mathematically tractable considering the simple
fact that the feature space is of high (possibly infinite) dimensionality. Fortunately, we can reformulate this
problem in terms of dot products in the feature space and then replace them with kernel functions. Based on
reproducing kernel theory, any solution wΦ to Equation (29) can be expanded as

wΦ =

NT OT
∑

i=1

αiΦ(zi) = ZΦα (30)

where NTOT = Nin + Nout and ZΦ = [z1 , z2 , . . . , zNT OT
] =

[

Φc(x1) , . . . ,Φc(xNin
) ,Φc(y1) , . . . ,Φc(yNout

)
]

is
a matrix whose columns are the mapped vectors in F of the corresponding spectra in both the IWR and OWR
concatenated together and α is the KFD vector in the feature space.

Combining the definition of µ̂XΦ
and Equation (30) yields

wT
Φµ̂XΦ

= αT Min (31)

where (Min)j , 1
Nin

∑Nin

l=1 k(xj ,xl). Similarly, using the definition of µ̂YΦ
and Equation (30) gives

wT
Φµ̂YΦ

= αT Mout (32)

where (Mout)j , 1
Nout

∑Nout

l=1 k(yj ,yl). Notice that the second equations in both expansions above are the direct
result of using the kernel trick (Equation (18)).

By using the definition of SΦ
B and Equations (31) and (32), the numerator of Equation (29) can be written as

wT
ΦSΦ

BwΦ = αT Aα (33)

where A = (Min − Mout)(Min − Mout)
T . Using a similar argument, the denominator of Equation (29) can be

rewritten as
wT

ΦSΦ
WwΦ = αT Bα (34)

where B = Kin(I − 1Nin
)KT

in + Kout(I − 1Nout
)KT

out, I is the identity matrix, Kin is an NTOT × Nin Gram
matrix, Kout are NTOT × Nout Gram matrix, and 1Nin

and 1Nout
are matrices with each entry equal to 1/Nin

and 1/Nout, respectively. For example, each element of Kin and Kout are defined to be

(Kin)mn = k(xn,xm)

(Kout)mn = k(yn,ym).
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A combination of Equations (33) and (34) means that Fisher’s discriminant in F can now be found by
maximizing

J(α) =
αT Aα

αT Bα
. (35)

As in the solution to the analogous problem in the input space (Equation (9)), Equation (35) can be solved
simply by finding the leading eigenvector, αKFD, of B−1A. Thus, the identity in Equation (30) becomes
wΦ = wFΦ

= ZΦαKFD.

Substituting this result into Equation (21), gives

KFD(r) = (Φ(r) − µ̂YΦ
)T

(

wFΦ
wT

FΦ

)

(Φ(r) − µ̂YΦ
).

= (Φ(r) − µ̂YΦ
)T ZΦαKFDαT

KFDZT
Φ(Φ(r) − µ̂YΦ

). (36)

To simplify this equation, let

Φ(r)T ZΦ = Φ(r)T [Φ(x1) Φ(x2) . . . Φ(xNT OT
)] = k (Z, r)

T
= KZr (37)

and

µ̂
T
YΦ

ZΦ =
1

Nout

∑

y∈OWR

Φ(y)T [Φ(z1)Φ(z2) . . . Φ(zNT OT
)] =

1

Nout

∑

y∈OWR

k (Z,y)
T

= KZµ. (38)

Using Equations (37) and (38), Equation (36) becomes

KFD(r) =
(

KT
Zr − KT

Zµ

)T

αKFDαT
KFD

(

KT
Zr − KT

Zµ

)

(39)

Equation (39) is the equation used for the Kernel Fisher Discriminant algorithm in this paper.

4.3 Kernel Eigenspace Separation Transform

In this section, EST is defined in the feature space F and then reformulated solely in terms of dot products.
Once again, the kernel trick is utilized to convert it into its kernel version. The difference correlation matrix
(DCOR) R for the input data in the feature space can be written as

RΦ = RXΦ
− RYΦ

=
1

Nin
Φ(X)Φ(X)T − 1

Nout
Φ(Y)Φ(Y)T

=
[

Φ(X) −Φ(Y)
]

[

Φ(X)T /Nin

Φ(Y)T /Nout

]

. (40)

Here, the correlation matrix in the feature space of the first class is RXΦ
= Φ(X)Φ(X)T /Nin and likewise, the

correlation matrix in the feature space of the second class is RYΦ
= Φ(Y)Φ(Y)T /Nout. The eigen decomposition

of DCOR in the feature space can be rewritten in block-matrix form in terms of its positive and negative
eigenvalues and eigenvectors as

RΦ =
[

V+Φ
V−Φ

]

[

Λ+Φ
0

0 Λ−Φ

] [

VT
+Φ

VT
−Φ

]

(41)

where the columns of V+Φ
and V−Φ

are the eigenvectors in the feature space with their corresponding non-zero
positive (Λ+Φ

) and negative (Λ−Φ
) eigenvalues, respectively. In order to diagonalize the DCOR matrix RΦ we

must find all eigenvectors (both positive and negative) VΦ and all nonzero eigenvalues ΛΦ which satisfy the
equation

ΛΦVΦ = RΦVΦ. (42)
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Kernelization of EST in the Feature Space

Due to the (possibly) extreme high-dimensionality of the feature space, (42) cannot be explicitly solved. In order
to circumvent this problem, the equation can be kernelized by writing it in terms of kernel functions. Doing so
allows us to implement the equation in the original input domain in terms of kernel functions.

Each eigenvector vk
Φ in the feature space can be written as a linear combination of the centered input data

as

vk
Φ =

1√
Nin

Nin
∑

i=1

αk
i Φ(xi)λ

− 1

2

i − 1√
Nout

Nout
∑

j=1

βk
j Φ(yj)λ

− 1

2

j

=
1√
Nin

Φ(X)αkΛ
− 1

2

+ − 1√
Nout

Φ(Y)βkΛ
− 1

2

− (43)

where the expansion coefficients, αk and βk, are defined as αk = (αk
1 , αk

2 , . . . , αk
Nin

)T and βk = (βk
1 , βk

2 , . . . , βk
Nout

)T

for k = 1, . . . , Nt where Nt = Nin + Nout. Equation (43) can be used to write all eigenvectors with non-zero
eigenvalues as

VΦ =
[

v1
Φ v2

Φ · · · vNt

Φ

]

= Φ(X)AΛ
− 1

2

+ − Φ(Y)BΛ
− 1

2

−

=
[

Φ(X) −Φ(Y)
]

[

A

B

]

[

Λ
− 1

2

+ 0

0 Λ
− 1

2

−

]

=
[

Φ(X) −Φ(Y)
]

D (44)

where

[

A

B

]

=

[

α1

√
Nin

α2

√
Nin

· · · αNt
√

Nin

β1

√
Nout

β2

√
Nout

· · · βNt

√
Nout

]

Λ =

[

Λ+ 0

0 Λ−

]

and the columns of

D =

[

A

B

]

[

Λ
− 1

2

+ 0

0 Λ
− 1

2

−

]

=

[

α1

√
Nin

α2

√
Nin

· · · αNt
√

Nin

β1

√
Nout

β2

√
Nout

· · · βNt

√
Nout

]

[

Λ
]− 1

2 (45)

represent the eigenvectors of a kernel matrix associated with the kernelized version of EST (shown below). By
substituting equations (40) and (44) into (42) and using the kernel trick from Equation (18) to simplify we obtain

Λ
[

Φ(X) −Φ(Y)
]

D =
[

Φ(X) −Φ(Y)
]

[

KXX

Nin
−KXY

Nin

KYX

Nout
−KYY

Nout

]

D (46)

where KXX = Φ(X)T Φ(X) is an Nin ×Nin kernel (Gram) matrix, KYY = Φ(Y)T Φ(Y) is an Nout ×Nout kernel
matrix, KXY = Φ(X)T Φ(Y) is an Nin × Nout kernel matrix, and KYX = Φ(Y)T Φ(X) is an Nout × Nin kernel
matrix. Each of the entries in all four matrices is obtained in terms of the kernel function k.

Multiplying both sides of (46) by [Φ(X) Φ(Y)]T and again using (18) to simplify produces

Λ

[

KXX

Nin
−KXY

Nin

KYX

Nout
−KYY

Nout

]

D =

[

KXX

Nin
−KXY

Nin

KYX

Nout
−KYY

Nout

]2

D. (47)
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Solving equation (47) is tantamount to finding the eigenvectors and eigenvalues of the kernel matrix

KKEST =

[

KXX

Nin
−KXY

Nin

KYX

Nout
−KYY

Nout

]

= D̃ΛD̃
T
. (48)

and normalizing each of the eigenvectors by the square root of its associated eigenvalue. Here, the columns of

the matrix D̃ =
[

d̃1 d̃2 . . . d̃Nt

]

represent the positive and negative eigenvectors of the KEST kernel matrix,

KKEST . Then, D =

[

d̃1√
λ1

d̃2√
λ2

. . .
d̃Nt√
λNt

]

where Λ = diag (λ1, λ2, . . . , λNt
) .Equivalently, they are the expansion

coefficients in (43). The corresponding positive and negative eigenvalues are contained in the diagonal matrix Λ.
For simplicity, the eigenvalues and corresponding eigenvectors should be ordered from most positive significant
to most negative significant.

Let the KEST projection vectors, WKEST vectors be either the first m positive or negative eigenvectors of
D. Thus, either

WKEST = W+
KEST = [d1 d2 · · · dm]

WKEST = W−
KEST = [dNt

dNt−1 · · · dNt−m+1] (49)

where, as with KPCA, m is a configurable constant. The choice of using most positive significant or most
negative significant is a data dependent choice and is determined using the procedure outlined for the linear EST
method in Section 2.3.

Substituting Equation (49) for D in Equation (44) (i.e. - only using the first m positive or negative eigen-
vectors) and using this result as the projection vectors, WΦ, in Equation (21) yields

KEST(r) =
(

Φ(r) − µ̂YΦ

)T
(

VΦVT
Φ

)

(Φ(r) − µ̂YΦ
).

= (Φ(r) − µ̂YΦ
)T Φ(Z̄)WKEST WT

KEST Φ(Z̄)T
(

Φ(r) − µ̂YΦ

)

. (50)

where Φ(Z̄) = [Φ(X) − Φ(Y)]. For notational convenience, let

Φ(r)T Φ(Z) = Φ(r)T
[

Φ(x1), . . . ,Φ(xNin
),−Φ(y1), . . . ,−Φ(yNout

)
]

=
[

k(x1, r), . . . , k(xNin
, r),−k(y1, r), . . . ,−k(yNout

, r)
]

= k(Z̄, r)T = KZ̄r (51)

where the second equal sign is as a direct result of using the kernel trick in Equation (18). The vector k(Z̄, r)T

is commonly referred to as the empirical kernel map of an input vector r.15 Similarly, define

µ̂
T
YΦ

Φ(Z̄) =
1

Nout

∑

y∈OWR

Φ(y)T
[

Φ(x1), . . . ,Φ(xNin
),−Φ(y1), . . . ,−Φ(yNout

)
]

=
1

Nout

∑

y∈OWR

k
(

Z̄,y
)T

= KZ̄µ̂. (52)

Using Equations (51) and (52), Equation (50) becomes

KEST(r) =
(

KT
Z̄r − KT

Z̄µ̂

)T

WKEST WT
KEST

(

KT
Z̄r − KT

Z̄µ̂

)

(53)

As in the case of linear EST in Section 2.3, as well as in KPCA, it is also possible to project onto the complement
subspace (I − VΦVT

Φ) in the feature space as an extension of Equation (4).
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5. RX AND KERNEL-RX ANOMALY DETECTORS

The RX anomaly detector introduced by Reed and Yu5 has become the benchmark for hyperspectral anomaly
detection because of its natural assumption that neither the target spectrum nor the covariance matrix of the
background clutter need to be known. The RX-algorithm is based on comparing the difference between the
test spectrum and the spectra of the immediate background samples. It is similar to the Mahalanobis distance
measure and is given by

RX(r) = (r − µ̂Y )T C−1
Y (r − µ̂Y ). (54)

where r is the test sample, µ̂Y and CY are the spectral mean and covariance of the background clutter samples
in the OWR. Similarly, the RX-algorithm can be defined in the feature space as

RX(Φ(r)) = (Φ(r) − µ̂YΦ
)T Ĉ

−1

bΦ (Φ(r) − µ̂YΦ
) (55)

where ĈYΦ
is the estimated covariance matrix of the background clutter and µ̂YΦ

is the mean of the background
clutter samples in the feature space. Equation (55) corresponds to a linear detector in the feature space; however,
it corresponds to a nonlinear detector in the original input space. Unfortunately, Equation (55) cannot be directly
implemented because of the high dimensionality of the feature space. The kernel version of the RX algorithm
was obtained in6 and is given as

KRX(r) =
(

KT
Yr − KT

µ̂
Y

)T

K̂
−1

Y

(

KT
Yr − KT

µ̂
Y

)

. (56)

where KYr = Φ(r)T YcΦ
, Kµ̂

Y
= µ̂

T
YΦ

YcΦ
and K̂Y is the estimated centered kernel matrix. Equation (56) is the

kernel-RX equation used in this paper.

6. RESULTS

In this Section, each of the eight equations is implemented using both simulated illustrative toy data as well
as real hyperspectral imagery from the Hyperspectral Digital Imagery Collection Experiment (HYDICE) and
Airborne Hyperspectral Imager (AHI) data sets. For this paper, we use a Gaussian Radial Basis Function (RBF)
kernel which takes the form k(x,y) = exp[−||x−y||2/2σ2] where σ > 0 is a critical kernel parameter representing
the width of the Gaussian kernel. This parameter must be chosen so that the RBF function can full exploit the
data variations. In this paper, the value of σ was determined experimentally for each algorithm and for each
image using a cross-validation technique. Performance results using ROC curve analysis for each of the eight
methods are provided and compared.

6.1 Simulated Data

Each of the eight algorithms are implemented here as discrimination methods on an illustrative toy data set.
The data set, shown in Figure 2(a), consists of two nonlinear Gaussian mixtures. Class 1 is represented by the
red (*) points; Class 2 is represented by the blue (o) points. It is clear from this figure that no linear separating
hyperplane can be placed that perfectly separates the two data classes.

In order to implement the algorithms, Class 1 and Class 2 were defined as the two sets corresponding to the
data in the IWR and OWR of a fictional dual window. Extending the problem to an anomaly detection setting,
Class 1 represents the target data and Class 2 represents the background data. The results using each of the
methods on the simulated data set are shown in Figures 2(b)-2(i). To improve visual quality, the points in Class
2 are now yellow (o). For the nonlinear algorithms, the kernel parameter σ was experimentally determined and
set equal to a value which provided a decent looking result. The green lines in Figures 2(c), 2(d), and 2(e) are
the projection vectors used in each case. The blue contour lines are decision boundaries at different thresholds.
The shading defines relative projection separation values; lighter shading means a larger projection separation
value which in turn implies a higher likelihood that point will be classified as an anomaly. Similarly, darker areas
correspond to points which are more likely to be classified as background clutter.

It is strikingly clear that all four of the nonlinear methods have significantly better discrimination abilities
than their linear counterparts. Each of the four nonlinear methods generate decision boundaries which very
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Figure 2. (a) Original Simulated 2-D Data Set. A mixture of two nonlinear Gaussian distributions. The red points (*)
represent the data in Class 1 and the blue (o) represent the data in Class 2. Contour and surface plots for the 2-D
simulated data set using (b) RX, (c) PCA, (d) FLD, (e) EST, (f) KRX, (g) KPCA, (h) KFD, and (i) KEST.

nicely conform to the overall shape of the distribution. While it is difficult to actually compare the performance
among the four nonlinear algorithms, it is nonetheless easy to see that the nonlinear methods perform better
detection than the linear methods.

6.2 Hyperspectral Imagery

Three real hyperspectral images from two different HSI sensor databases were used to compare the performances
of the eight algorithms outlined above. Two of the images are from the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) data set and the third is from the University of Hawaii’s Airborne Hyperspectral Imager
(AHI) sensor.

Before any processing is done, all spectra in each image are normalized so that all values in the data cube lie
between zero and one. The normalization factor is calculated as the largest value among all spectral components
in each hyperspectral image. This normalization helps to effectively use the dynamic range of the RBF kernel.6

In all algorithms a dual window was used to collect data. To provide consistency, an IWR of 7x7 pixels, a guard
band of 9x9 pixels, and an OWR of 19x19 pixels were used for all algorithms and for all images. It was stated
that the IWR size should be about as large as the biggest target in the image. This is more or less the case
for all images. The size of the OWR was chosen such that there are a sufficient number of vectors available for
further processing.

In order to compare the performances of each of the methods, receiver operating characteristic (ROC) curves
were generated based on ground truth information obtained from each image. The ROC curves provide a visual
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quantitative comparison by plotting the probability of correct detection, PD, versus the false alarm rate, RFA.
For each hyperspectral image, ground truth was obtained by determining the locations of all pixels in the image
which correspond to a target to be detected. The probability of detection is defined as PD = Nhit

NT
and the false

alarm rate is calculated by RFA = Nmiss

NT P
where, at each threshold T, Nhit is the number of pixels correctly

identified as target, NT is the total number of target pixels in the ground truth for that image, Nmiss is the
number of pixels incorrectly labeled as targets, and NTP is the total number of pixels in the image. For visual
purposes, all outputs shown below have been binary thresholded at a value which corresponds to an 80% detection
rate for that image.

6.3 HYDICE Imagery

The HYDICE sensor collects radiance information over a spectral range spanning the VNIR and SWIR frequency
ranges (0.4 - 2.5 µm). Each band is approximately 10 nm wide generating a spectral resolution consisting of
210 spectral bands. Due to water absorption and low signal-to-noise ratio (SNR), only 150 of those bands are
actually used here; bands 1-22, 102-108, 137-151, and 195-210 have been removed. The two HYDICE images
used in this thesis are the Desert Radiance (DR-II) and Forest Radiance (FR-I) data sets. The DR-II image
consists of 6 ‘targets of interest’ on a dirt road running through a dusty terrain with light vegetation. The FR-I
image has 14 ‘targets of interest’ in a grassy field situated near a dense forrest. The DR-II and FR-I images are
shown in Figures 3(a) and 4(a), respectively.

6.3.1 DR-II Results and Analysis

The ground truth for the DR-II image is shown in Figure 3(b). It clearly shows the location of the six ‘targets
of interest’. All eight algorithms were implemented for this image and the best outputs for each can be seen in
Figures 3(c) - 3(j). The results shown are the best results obtained using the eight detectors outlined above.
For PCA, the first 6 eigenvectors using the OWR spectra were used in Equation (8). For KPCA, the first 6
eigenvectors using the OWR spectra were used in the complement subspace form of Equation (28). For EST
and KEST, the first 3 positive eigenvectors were used in Equations (15) and (53), respectively.

The ROC curves at low FAR for each of the eight methods can be seen in Figure 5(a). From these results,
it appears that each of the four nonlinear methods performs better than its respective linear counterpart. In
addition, all four nonlinear detectors aggregately exhibit better results than all four linear detectors. At low
FAR, KPCA in this situation performs best among all methods followed by KRX, KEST and KFD. Among the
linear methods, PCA, EST, and RX all perform about the same with FLD clearly performing the worst out of
all the detectors.

6.3.2 FR-I Results and Analysis

The ground truth for the FR-I HYDICE image is shown in Figure 4(b). It clearly shows the location of the
fourteen ‘targets of interest’. All eight algorithms were implemented for this image and the best outputs for
each can be seen in Figures 4(c) - 4(j). The results shown are the best results obtained using the eight detectors
outlined above. For PCA, the first 6 eigenvectors using the OWR spectra were used in Equation (8) and for
KPCA, the first 6 eigenvectors using the OWR spectra were used in the complement subspace form of Equation
(28). For EST, the first three negative eigenvectors were used in Equation (16) and for KEST the first 3 positive
eigenvectors were used in Equation (53).

The ROC curves for each of the eight algorithms at low FAR are shown in Figure 5(b). From these results,
it is clear that KPCA performs the best among all eight algorithms for this image since it detects very few
background clutter regions. The results for KFD, KEST, and PCA also appear to perform very well with
slightly more false alarms appearing at this detection rate. At very low RFA, PCA outperforms all algorithms
except KPCA and KFD. KEST appears to perform much better than EST for this image as EST exhibits a large
amount of false alarms around the treeline region. A region similar to this one could prove to be problematic for
anomaly detectors as there is an abrupt change from foliage material to a shadowed grassy region. Once again,
the result using FLD is the poorest among all detectors. The results for this image indicate that each of the
nonlinear algorithms performs better compared with its respective linear version. However, since PCA performs
well for this image, it cannot be said that all nonlinear versions as a whole perform this task better than the
four linear methods.
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Figure 3. (a) Original DR-II HYDICE image. (b) Ground truth for the DR-II HYDICE image. Output results at 80%
detection rate using (c) RX, (d) PCA, (e) FLD, (f) EST, (g) KRX, (h) KPCA, (i) KFD, and (j) KEST.

6.4 AHI Imagery and Results

The third image is from Hawaii’s Airborne Hyperspectral Imagery (AHI) database. This hyperspectral cube
contains 70 spectral bands and spans the long-wave infrared (LWIR) frequency range (8 - 11.5 µm). Thus, a
spectral resolution of 50 nm is provided by the sensor. The AHI-1 image used in this paper is shown in Figure
6(a). The ground truth for the AHI-1 image is shown in Figure 6(b). It shows the locations of the thirty-five
‘targets of interest’ - mines in this case. All eight algorithms were once again implemented for this image and the
best outputs for each can be seen in Figures 6(c) - 6(j). The results shown are again the best results obtained
using the eight detectors outlined above. For PCA, the first six eigenvectors using the OWR spectra were used
in Equation (8) and for KPCA, the first six eigenvectors using the OWR spectra were used in the complement
subspace form of Equation (28). For EST, the first five positive eigenvectors were used in Equation (15) and for
KEST the first five positive eigenvectors were used in Equation (53).

The ROC curves for each of the eight algorithms at low FAR are shown in Figure 5(c). From the images and
ROC curves it can be seen that for this image at low FAR, KFD performs the best among all methods while RX
clearly really suffers from a large number of false alarms and thus exhibits the worst detection performance. In
general, at low false alarm rates, KFD, KPCA, and KRX all perform better than the other detectors. However,
at very low FAR FLD actually achieves a higher detection rate than KEST. Nonetheless, each nonlinear detector
performs at a higher level than its linear counterpart. However, the performance increase from each linear
detector compared to its corresponding nonlinear detector is not as significant as in the HYDICE images. The
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Figure 4. (a) Original FR-I HYDICE image. (b) Ground truth for the FR-I HYDICE image. Output results at 80%
detection rate using (c) RX, (d) PCA, (e) FLD, (f) EST, (g) KRX, (h) KPCA, (i) KFD, and (j) KEST.
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Figure 5. ROC curves for the (a) DR-II (b) FR-I and (c) AHI-1 image at low false alarm rates.

reason for this is most likely explained by the large anomalous areas detected on the left side of the images in
Figure 6. This region corresponds to the darker regions in Figure 6(a). Further analysis leads to the conclusion
that the terrain of these areas are vastly different spectrally than the background; that is, the spectral properties
of the dark region differ greatly from those of the background immediately surrounding this area. This explains
why these pixels are labeled as anomalies in the detector outputs and why a large number of false alarms are
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Figure 6. (a) Original AHI-1 image. (b) Ground truth for the AHI-1 image. Output results at 80% detection rate using
(c) RX, (d) PCA, (e) FLD, (f) EST, (g) KRX, (h) KPCA, (i) KFD, and (j) KEST.

generated in this region. While they are in fact anomalies (with respect to the background), they are not
considered targets. Thus, the nonlinear detectors suffer greatly from false alarms in this region, hindering their
overall detection rates. From Figure 6(i), it can be seen that KFD does not generate a lot of false alarms in this
region, helping it to achieve a higher detection performance than all other detectors for this image.

7. CONCLUSIONS

This paper provided a performance characterization of nonlinear kernel-based methods for hyperspectral anomaly
detection. Four linear algorithms were used to generate projection vectors onto which samples from the inner
window region and outer window region of a dual window centered at the test pixel were projected. Each of these
algorithms was then mapped into a high-dimensional feature space in an attempt to exploit the higher-order
correlation between the spectral characteristics of the pixels. The nonlinear algorithms in the feature space then
needed to be rewritten in terms of kernels functions of the data in the original input space. All eight anomaly
detection algorithms were briefly explained and implemented using three hyperspectral data cubes containing a
varying number of ‘targets of interest’.

The results from the three hyperspectral images did provide a rough sense that the kernel-based algorithms
could achieve better detection levels than their respective linear methods. Further research should examine the
task of optimizing the parameters used in these algorithms (i.e. - kernel parameter, number of eigenvectors used
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for projection vectors, dual window size, etc.). In addition, more hyperspectral imagery is being tested in order
to formulate a more accurate comparison of the algorithms.
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